\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx\) [886]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 157 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\frac {B \text {arctanh}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {A \sin ^3(c+d x)}{3 b^2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \]

[Out]

1/2*B*sin(d*x+c)/b^2/d/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(1/2)+1/3*A*sin(d*x+c)^3/b^2/d/cos(d*x+c)^(5/2)/(b*cos(
d*x+c))^(1/2)+A*sin(d*x+c)/b^2/d/cos(d*x+c)^(1/2)/(b*cos(d*x+c))^(1/2)+1/2*B*arctanh(sin(d*x+c))*cos(d*x+c)^(1
/2)/b^2/d/(b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {18, 2827, 3852, 3853, 3855} \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\frac {A \sin ^3(c+d x)}{3 b^2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \text {arctanh}(\sin (c+d x))}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \]

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(b*Cos[c + d*x])^(5/2)),x]

[Out]

(B*ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(2*b^2*d*Sqrt[b*Cos[c + d*x]]) + (B*Sin[c + d*x])/(2*b^2*d*Cos[c
+ d*x]^(3/2)*Sqrt[b*Cos[c + d*x]]) + (A*Sin[c + d*x])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]]) + (A*Sin
[c + d*x]^3)/(3*b^2*d*Cos[c + d*x]^(5/2)*Sqrt[b*Cos[c + d*x]])

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m - 1/2)*b^(n + 1/2)*(Sqrt[a*v]/Sqrt[b*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {\cos (c+d x)} \int (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx}{b^2 \sqrt {b \cos (c+d x)}} \\ & = \frac {\left (A \sqrt {\cos (c+d x)}\right ) \int \sec ^4(c+d x) \, dx}{b^2 \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{b^2 \sqrt {b \cos (c+d x)}} \\ & = \frac {B \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 b^2 \sqrt {b \cos (c+d x)}}-\frac {\left (A \sqrt {\cos (c+d x)}\right ) \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{b^2 d \sqrt {b \cos (c+d x)}} \\ & = \frac {B \text {arctanh}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {A \sin ^3(c+d x)}{3 b^2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.48 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {\cos (c+d x)} \left (3 B \text {arctanh}(\sin (c+d x)) \cos ^2(c+d x)+3 B \sin (c+d x)+2 A (2+\cos (2 (c+d x))) \tan (c+d x)\right )}{6 d (b \cos (c+d x))^{5/2}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(b*Cos[c + d*x])^(5/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*(3*B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + 3*B*Sin[c + d*x] + 2*A*(2 + Cos[2*(c + d*x)])*
Tan[c + d*x]))/(6*d*(b*Cos[c + d*x])^(5/2))

Maple [A] (verified)

Time = 5.22 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.80

method result size
default \(\frac {-3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )+3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )+4 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+3 B \sin \left (d x +c \right ) \cos \left (d x +c \right )+2 A \sin \left (d x +c \right )}{6 b^{2} d \sqrt {\cos \left (d x +c \right ) b}\, \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(125\)
parts \(\frac {A \left (2 \left (\cos ^{2}\left (d x +c \right )\right )+1\right ) \sin \left (d x +c \right )}{3 d \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \cos \left (d x +c \right )^{\frac {5}{2}}}+\frac {B \left (-\left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )+\left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )+\sin \left (d x +c \right )\right )}{2 d \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(134\)
risch \(-\frac {i \left (3 B \,{\mathrm e}^{4 i \left (d x +c \right )}-3 B -16 A \cos \left (d x +c \right )-8 i A \sin \left (d x +c \right )\right )}{6 b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \sqrt {\cos \left (d x +c \right )}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2} d}+\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 b^{2} \sqrt {\cos \left (d x +c \right ) b}\, d}-\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 b^{2} \sqrt {\cos \left (d x +c \right ) b}\, d}\) \(157\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/6/b^2/d*(-3*B*cos(d*x+c)^3*ln(-cot(d*x+c)+csc(d*x+c)-1)+3*B*cos(d*x+c)^3*ln(-cot(d*x+c)+csc(d*x+c)+1)+4*A*si
n(d*x+c)*cos(d*x+c)^2+3*B*sin(d*x+c)*cos(d*x+c)+2*A*sin(d*x+c))/(cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(5/2)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.65 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\left [\frac {3 \, B \sqrt {b} \cos \left (d x + c\right )^{4} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (4 \, A \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{12 \, b^{3} d \cos \left (d x + c\right )^{4}}, -\frac {3 \, B \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{4} - {\left (4 \, A \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{6 \, b^{3} d \cos \left (d x + c\right )^{4}}\right ] \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/12*(3*B*sqrt(b)*cos(d*x + c)^4*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*s
in(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(4*A*cos(d*x + c)^2 + 3*B*cos(d*x + c) + 2*A)*sqrt(b*cos(d
*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b^3*d*cos(d*x + c)^4), -1/6*(3*B*sqrt(-b)*arctan(sqrt(b*cos(d*x + c
))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^4 - (4*A*cos(d*x + c)^2 + 3*B*cos(d*x + c) + 2*A
)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b^3*d*cos(d*x + c)^4)]

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1033 vs. \(2 (135) = 270\).

Time = 0.43 (sec) , antiderivative size = 1033, normalized size of antiderivative = 6.58 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/12*(16*((3*cos(2*d*x + 2*c) + 1)*sin(6*d*x + 6*c) + 3*(3*cos(2*d*x + 2*c) + 1)*sin(4*d*x + 4*c) - 3*cos(6*d*
x + 6*c)*sin(2*d*x + 2*c) - 9*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*A/((b^2*cos(6*d*x + 6*c)^2 + 9*b^2*cos(4*d*x
+ 4*c)^2 + 9*b^2*cos(2*d*x + 2*c)^2 + b^2*sin(6*d*x + 6*c)^2 + 9*b^2*sin(4*d*x + 4*c)^2 + 18*b^2*sin(4*d*x + 4
*c)*sin(2*d*x + 2*c) + 9*b^2*sin(2*d*x + 2*c)^2 + 6*b^2*cos(2*d*x + 2*c) + b^2 + 2*(3*b^2*cos(4*d*x + 4*c) + 3
*b^2*cos(2*d*x + 2*c) + b^2)*cos(6*d*x + 6*c) + 6*(3*b^2*cos(2*d*x + 2*c) + b^2)*cos(4*d*x + 4*c) + 6*(b^2*sin
(4*d*x + 4*c) + b^2*sin(2*d*x + 2*c))*sin(6*d*x + 6*c))*sqrt(b)) - 3*(4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c)
)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2
+ 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*c
os(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2
*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c
)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c))))*B/((b^2*cos(4*d*x + 4*c)^2 + 4*b^2*cos(2*d*x + 2*c)^2 + b^2*sin(4*d*x + 4*c)^2 + 4*b^2*sin(4*d*x + 4*
c)*sin(2*d*x + 2*c) + 4*b^2*sin(2*d*x + 2*c)^2 + 4*b^2*cos(2*d*x + 2*c) + b^2 + 2*(2*b^2*cos(2*d*x + 2*c) + b^
2)*cos(4*d*x + 4*c))*sqrt(b)))/d

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c))^(5/2)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b \cos (c+d x))^{5/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(b*cos(c + d*x))^(5/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(b*cos(c + d*x))^(5/2)), x)